Direct control of firing rate gain by dendritic shunting inhibition.

نویسندگان

  • Charles Capaday
  • Carl van Vreeswijk
چکیده

The firing rate gain of neurons, defined as the slope of the relation between input to a neuron and its firing rate, has received considerable attention in the past few years. This has been largely motivated by the many experimental demonstrations of behavior related gain changes in a variety of neural circuits of the CNS. A surprising result was that a prime candidate, shunting inhibition, apparently does not change the firing rate gain of neurons. However, in this paper, we show a physiologically plausible mechanism by which shunting inhibition in the dendritic tree does, in a simple and direct manner, modulate the firing gain of neurons. The effect is due to a strong attenuation of the dendritic current arriving at the soma by shunting dendritic inhibition. Increasing the dendritic inhibitory conductance enhances the attenuation of current flowing from the dendritic to the somatic compartment and thus reduces firing gain. This mechanism relies on known physiological and anatomical properties of CNS neurons and does not require special features such as tunable neural noise inputs. Gain control by the proposed mechanism may prove to be a ubiquitous feature of neural circuit operations and it is readily verifiable experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation.

Adjusting input-output gain is crucial for information processing by the brain. Gain control of subthreshold depolarization is commonly ascribed to increased membrane conductance caused by shunting inhibition. But contrary to its divisive effect on depolarization, shunting inhibition on its own fails to divisively modulate firing rate, apparently upsetting a critical tenet of neural models that...

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation

Neuronal gain control is important for processing information in the brain. Shunting inhibition is not thought to control gain since it shifts input-output relationships during tonic excitation rather than changing their slope. Here we show that tonic inhibition reduces the gain and shifts the offset of cerebellar granule cell input-output relationships during frequency-dependent excitation wit...

متن کامل

Hysteresis reduction in proprioception using presynaptic shunting inhibition.

1. The tonic responses of angular-position-sensitive afferents in the metathoracic chordotonal organ of the locust leg exhibit much hysteresis. For a given joint angle, the ratio of an afferent's tonic firing rate after extension to its firing rate after flexion (or vice versa) is typically between 1.2:1 and 3:1 but can be as large as 10:1. Spiking local interneurons, that receive direct inputs...

متن کامل

The Effect of NMDA Receptors on Gain Modulation

The ability of individual neurons to modulate the gain of their input-output function is important for information processing in the brain. In a recent study, shunting inhibition was found to modulate the gain of cerebellar granule cells subjected to simulated currents through AMPA receptor synapses. Here we investigate the effect on gain modulation resulting from adding the currents mediated b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of integrative neuroscience

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2006